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Background
Functional MRI (fMRI) is a primary 
tool in neuroscience that enables 
non-invasive detection and character-
ization of brain activity. fMRI is often 
described in terms of spatial ‘map-
ping’; importantly, however, fMRI 
experiments encode information 
about brain activity in the temporal 
domain. Echo-planar imaging (EPI) 
has therefore been crucial to this 
development by enabling temporal 
resolution (TR) of several seconds  
per whole-brain image volume.  
Nevertheless, the encoding of activ-
ity in the temporal domain means 
that fMRI data quality is fundamen-
tally tied to temporal resolution.  
It is therefore notable that a typical 
fMRI experiment with TR = 3 s may 
encode hundreds of thousands of 
voxels, but can only achieve 200 time 
points in 10 minutes. The advent  
of parallel imaging has enabled 
reduction of image distortions in  
EPI; however, unlike many structural 
MRI techniques, parallel imaging 
‘acceleration’ has little effect on  
volume scan times in fMRI. 

Temporal resolution in fMRI has  
until recently remained directly pro-
portional to the number of slices  
(TR = 2-3 s). The explosion of simul-
taneous multi-slice (SMS, also known 
as multiband) technology in the past 
5 years, described in detail elsewhere 
in this issue, has now removed the 
strict coupling between the number 
of slices and the temporal resolution. 
The dense temporal sampling 
enabled by SMS techniques can enor-
mously benefit our ability to identify 
which voxels are activated by a task 
or define regions that spontaneously 
co-activate in resting-state fMRI,  
provided other aspects of data  
quality are not unduly compromised. 

The source of these gains is some-
what complex, and we therefore go 
into some detail on this point below.

In this article, we will focus in partic-
ular on the benefits SMS has to offer 
for resting-state fMRI. In resting-state 
fMRI [1, 3], intrinsic signal fluctua-
tions are used to identify connectivity 
patterns in the brain under the  
(now well-established) hypothesis 
that connected brain regions will  
co-fluctuate in activity level even in  
the absence of an experimentally 
imposed task (Fig. 1). A given neural 
network would thus be characterized 
by a common time course of activity 
that is shared within the network and 

1 This simplistic description of independent  
 time courses would only strictly hold if the  
 brain was composed of isolated networks.  
 In practice, the picture is more one of  
 networks that are more and less tightly  
 coupled, representing a hierarchy of  
 connectivity that is reflected in the degree  
 to which time courses are shared.

largely independent of activity outside 
the network1. Many resting-state  
studies aim to capture the dynamics  
of a rich set of networks, placing even 
greater demand on the temporal 
domain than simple tasks with pre-
defined timings. Moreover, dense  
temporal sampling has the potential  

Resting-state fMRI 
identifies patterns of 
connectivity across the 
brain based on sponta-
neous fluctuations of 
the BOLD signal (in the 
absence of an experi-
mentally-induced 
mental or cognitive 
state). Each map repre-
sents the spatial distri-
bution of one brain 
network, with example 
voxel time courses 
depicted in the color 
plots to the side. Brain 
networks are inferred 
by identifying voxels 
that share a common 
time course (e.g. are 
temporally correlated), 
as simulated here. The 
centrality of the time 
domain for identifying 
networks makes SMS 
acquisition a powerful 
technology for resting-
state fMRI.
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ment. In all cases, a voxel’s residuals 
would be given by the difference 
between the complete model fit 
(including all regressors) and the 
measured data. 

Inclusion of a larger number of 
regressor time courses by definition 
reduces the ‘noise’ residuals; but 
intuitively, there is a limit to the 
number of regressors that can be 
usefully fit. This intuition is partly 
quantified by the temporal ‘degrees 
of freedom’, which is essentially the 
number of data points available to 
the regression2. SMS can directly 
increase the degrees of freedom by 
enabling more time points in a given 
experimental duration, thereby 
boosting statistical significance. 

This is a key insight into the role of 
SMS in fMRI: Acquiring more sam-
ples per unit time increases degrees 
of freedom and supports fitting of 
an increased number of regressors; 
conversely, experiments with a 
small number of regressors are 
intrinsically high degrees-of-free-
dom and therefore have less to gain 
from SMS in a statistical sense.

Resting-state fMRI analysis  
In task fMRI, the timing of a given 
cognitive, sensory or motor process 
is controlled. By comparison, resting-
state fMRI analyses must empirically 
determine the time course of  
any resting-state network (RSN) of  
interest. There are broadly two 
approaches to this problem: ‘seed’ 
analyses extract the desired time 
course based on pre-specified anat-
omy, whereas data-driven ‘multivari-
ate’ analyses decompose the data set 
as a whole into network components 
based on certain criteria of interest.

Seed analysis is at heart similar to  
the regression described above for 
task fMRI. Investigators specify a 
seed voxel or region that they know 
to be part of a network of interest, 
from which a characteristic time 
series is extracted. This time series is 
then used in the same way as a task 
regressor to identify voxels that share 
this time course, representing brain 
areas with connectivity to the seed 
(i.e. RSNs) [3]. This concept can be 
extended to multiple networks by 
defining a set of seed regions and 

to reveal subtle aspects of these net-
works, such as transient connectivity. 
We discuss the role that SMS has to 
play in achieving these goals.

Benefits of high temporal 
resolution for resting- 
state fMRI
Statistical benefits of fast sampling 
One fundamental characteristic of 
fMRI is that the blood oxygenation 
level-dependent (BOLD) response to 
neural activity is relatively sluggish, as 
described by the blurred hemodynamic 
response function used to model the 
BOLD response to a task. It may seem 
at first as if there is little to be gained 
from sampling a slowly-varying signal 
faster than is necessary to characterize 
its basic temporal features. This intu-
ition would seem to be supported if 
one compares the size of BOLD signal 
change to the standard deviation of 
the measurement noise (the contrast-
to-noise ratio), for which the density 
of samples has little effect.

Critically, however, the statistical tests 
used to identify brain activity as ‘above 
threshold’ depend on both the noise 
level and the number of independent 
measurements. Increasing the number 
of time points reduces the influence  
of noise on estimates of BOLD signal 
change in much the same way that 
averaging of repeated measurements 
reduces noise. That is, an increased 
number of time points drives an 
improved estimate of the noise, even  
if the signal is much smoother than 
the temporal sampling rate. From this 
perspective, it is clear that the achiev-
able benefits depend on the specific 
properties of the noise, which is inex-
tricably linked to signal modeling.

fMRI analysis most typically decom-
poses the measured data into modeled 
‘signal’ and noise ‘residuals’ (defined as 
the component of the measured data 
that is unexplained by the signal 
model). A simple regression analysis of 
task fMRI might fit one regressor time 
series matching a pre-defined task to 
each voxel’s measured time course. 
More sophisticated analyses can 
include multiple regressors to account 
for independent cognitive processes, 
as well as artifactual fluctuations such 
as physiological variations or move-

extracting the unique time series 
from each region using multiple 
regression. For example, in the ‘dual 
regression’3 approach [5], network 
maps from a population brain atlas 
are used to extract subject-specific 
time courses, which are then used  
in a multiple regression to define 
subject-specific spatial maps for each 
RSN (typically 10s of networks).

Multi-variate analyses, most notably 
independent component analyses 
(ICA), are fundamentally different 
from regression. Rather than analyz-
ing each voxel independently with  
a seed-derived time series, the entire 
4-dimensional data set (3D space x 
1D time for one subject) is decom-
posed simultaneously. This analysis 
aims to holistically identify RSNs as 
‘modes’ (or ‘components’) of varia-
tion in the 4-dimensional data that 
are in some sense independent.  
Each mode represents an RSN and is 
characterized by a canonical time 
course and its associated spatial map. 
Temporal ICA aims to identify compo-
nents based on temporal indepen-
dence, which this fits with the char-
acterization of networks based on 
temporal co-fluctuation; alterna-
tively, spatial ICA require that the 
modes are spatially independent,  
i.e. non-overlapping. In practice, the 
fact that most fMRI protocols achieve 
several orders of magnitude more 
samples in space than time means 
that spatial ICA is far more robust 
than temporal ICA. For ICA, the num-
ber of networks that are identified is 
set by the investigator, and typically 
in the range of 10-100.

SMS for resting-state fMRI  
As in task fMRI, both seed and multi-
variate analyses decompose fMRI 
data into ‘signal’ (corresponding to 
RSNs) and noise residuals. Hence,  
we can apply similar arguments 
regarding the benefits of SMS for 

2 More precisely, degrees of freedom is the  
 number of independent time points in the  
 model-fitting residuals, reduced by the model  
 complexity (i. e. the number of regressors). 
3 While dual regression is not typically  
 described as a seed-based technique, it is  
 useful and appropriate to characterize it as  
 such for our purposes.
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resting-state fMRI based on the 
degrees of freedom, considering both 
the complexity of the model (number 
of RSNs) and the number of indepen-
dent noise measurements. For exam-
ple, the most common seed-based 
analysis includes only a few regres-
sors, and thus has intrinsically high 
degrees of freedom even without 
SMS. Seed-based analyses will there-
fore have little to gain from SMS in 
many situations, although SMS may 
be beneficial to seed-based analyses 
in clinical applications if it can confer 
reduced scan times.

The potential of SMS is at its greatest 
when a large number of RSNs are 
considered, for example in dual 
regression. As originally defined [5], 
the first stage of dual regression uses 
ICA to derive a group-wide atlas of 
RSN spatial maps, potentially parcel-
lating the entire cerebral cortex. 
Alternatively, the dual regression 
approach can utilize a network atlas 
that is derived from another data set 
or resource, such as the Human  
Connectome Project. In either case, 
the limiting degrees of freedom is at 
the individual subject level, since it is 
at this stage that a multiple regres-
sion is used to refine each RSN to its 
subject specific spatial map. The 
degrees of freedom for this multiple 
regression is thus determined by the 
number of time points in each sub-
ject’s scan and the number of RSNs 
being studied. In dual regression, the 
increased degrees of freedom offered 
by SMS acquisition directly enable 
consideration of a richer set of 
networks.

Intrinsically multi-variate analyses 
like ICA have the potential to decom-
pose fMRI data into hundreds of 
brain parcels representing a detailed 
network hierarchy, although more 
commonly 20-50 RSNs might be 
identified. The loss of degrees of 
freedom implied by this relatively 
large number of components would 
require a proportionate increase in 
the number of time points to robustly 
identify RSNs. Previously, this 
increase in time points could only  
be achieved by combining at a group 
level across a large cohort of subjects 
(requiring the assumption that brain 
regions co-align across subjects) or 

acquiring long time series from a 
given subject. Increasing the density 
of temporal sampling using SMS 
within a more modest experimental 
duration for a single subject  
(5-20 minutes) can therefore directly 
enable a more detailed analysis of  
a network hierarchy, such as the  
temporal functional modes [6] and 
clinical applications described below.

Resting-state fMRI in 
practice
The gains described above can be 
leveraged in several ways to improve 
the quality of resting-state fMRI data. 
First, for a fixed duration of experi-
ment, the increased degrees of free-
dom confers statistical benefit, which 
may be useful for detecting subtle 
differences between networks or for 
a more fine-scale differentiation of a 
given network. Alternatively, one can 
leverage this statistical advantage to 
combat the reduced SNR associated 
with smaller voxels to achieve gains 
in spatial resolution. Finally, one 
could reduce scan time in the face  
of limited subject compliance, with  
clinical applications in particular  
having much to gain. This final goal 
is directly enabled by SMS up to a 
point; however, resting-state fMRI 
acquisitions must be long enough to 
observe brain networks in a broad 
range of its repertoire of ‘states’.

Large-scale population studies  
Several neuroimaging initiatives have 
been launched in recent years that 
aim to distribute large-scale data-
bases of resting-state fMRI. These 
resources share the hypothesis that 
certain insights into brain function 
and connectivity can only be gained 
from a large number of subjects. 
Resources like the 1000 Functional 
Connectomes Project [7] achieve 
large numbers by aggregating many 
smaller existing studies, with the 
benefit of low additional cost but 
requiring researchers to account for 
heterogeneity across study protocols. 
An alternate approach is to explicitly 
acquire large cohorts with a single 
protocol to maximize data homoge-
neity and quality. We will briefly high- 
light the role of SMS in two such pro-
spective studies representing differ-
ent extremes of data acquisition: the 

Human Connectome Project (HCP) and 
the UK Biobank Project.

The HCP Consortium is focused on 
characterizing connectivity in the brain 
[8], with the WashU-UMinn consor-
tium focusing on healthy adults and 
acquiring a range of modalities includ-
ing resting-state fMRI in 1200 subjects 
[9]. SMS has been a central technol-
ogy to the HCP from the outset, and a 
number of technical developments 
have arisen from this project in addi-
tion to the data resource (see articles 
by Uğurbil and Yacoub in this issue). 
Within the HCP, the benefits of SMS 
have been intensely optimized to 
achieve both high spatial and temporal 
resolution fMRI (2 mm, TR = 0.72 s), 
with individual subjects undergoing 
four 15-minute resting-state scans. 
Subjects undergo a total of 4 hours of 
imaging, which additionally includes 
task fMRI, diffusion imaging and  
anatomical scans, as well as intense 
non-imaging phenotyping. Data  
are acquired on a single scanner  
(representing a pre-cursor to the  
MAGNETOM Prisma 3T platform)  
that was designed specifically for  
this study. The use of state-of-the-art  
SMS fMRI has enabled the HCP to 
achieve exquisite data quality for indi-
vidual subjects, as well as protocol 
homogeneity over a relatively large, 
extensively phenotyped cohort.

UK Biobank is an established epidemi-
ological cohort of 500,000 subjects 
aged 45-75 that has undergone (non-
imaging) phenotyping, behavioral/ 
lifestyle measures and genotyping, 
and will be followed for long-term 
health outcomes via the UK National 
Health Service. An Imaging Enhance-
ment study is currently in the pilot 
phase, and ultimately aims to enlist 
100,000 of the existing cohort for 
imaging, including brain, cardiac and 
body scans. Successfully scanning of  
this cohort over five years corresponds 
to extremely high throughput: three 
dedicated centers running 7 days per 
week, each accumulating 18 subjects 
per day. The resulting brain imaging 
protocol is limited to 35 minutes, dur-
ing which several imaging modalities 
are acquired (task and resting-state 
fMRI, diffusion imaging and multiple 
anatomical modalities). SMS imaging 
techniques developed for the HCP [10] 
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have been critical to achieving this 
highly-ambitious goal without requir-
ing significant compromise relative to 
conventional data quality. The resting-
state fMRI protocol achieves 2.4 mm 
resolution with sub-second sampling 
(TR = 0.73 s) using an SMS accelera-
tion of 8, enabling 500 time points per 
subject in just 6 minutes.

Revealing novel aspects of  
functional connectivity  
Coincident with the development of 
SMS acceleration for fMRI has been an 
explosion of ambitious resting-state 
research with respect to both sophisti-
cated data analysis techniques and 
attempts to probe increasingly subtle 
aspects of brain function. The benefit 
of high temporal resolution for rest-
ing-state fMRI is likely to extend 
beyond boosted statistics or improve-
ments in spatial resolution. Here,  
we highlight one example from our 
research where SMS has directly 

enabled novel methodology and pre-
liminary insights into functional con-
nectivity, namely the identification of 
temporally independent modes of 
functional activity.

The goal of most resting-state studies 
is to derive estimates of apparent  
connection strength between brain 
regions. While many potential mea-
sures of connection strength exist, 
the most common are based on  
temporal correlation. Standard 
approaches parcellate the brain into 
regions and associated time courses, 
and estimate the connection strength 
between a pair of regions based on 
the correlation between regional 
time series. Regardless of how the 
regions are derived (seed- or ICA-
based), this approach is underpinned 
by some problematic assumptions. 
Temporal correlation is only able to 
capture the time-averaged behavior 
of the connectivity between two 

regions, which would conceal neuro-
scientifically interesting variations  
in connection strength over time 
(‘non-stationarities’). Examples 
include independent networks with 
spatial overlap (due to interdigitation 
of neural populations or simply lim-
ited spatial resolution), or temporal 
modulation of physical connections 
due to processes like attention. In the 
case of multiple networks that con-
tain a common (overlap) region but 
are largely independent, the ‘net-
works’ identified by both spatial ICA 
and seed-based approaches are 
unsatisfying: spatial ICA requires 
components to be non-overlapping, 
whereas seed-based analysis identi-
fies all correlated areas as a single 
network, even if the extended 
regions do not significantly correlate 
with each other. These assumptions 
are problematic, both with respect to 
basic neuroscience investigations and 

Components of the visual system identified from resting-state data using ICA. On the left, spatial independence breaks the 
occipital lobe into non-overlapping ‘resting-state networks’ corresponding to early stages of processing of information at the centre 
and periphery of vision (RSN 1 and RSN 2, respectively), and higher-level visual processing (RSN 3). On the right, temporal 
independence combines across these areas to identify extended visual networks that correspond to known anatomical support for 
processes such as low-level visual processing (TFM 2), high vs low visual eccentricity (TFM 4) and the dorsal visual stream (TFM 8). 
Reproduced with permission from [2].
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for clinical applications, particularly 
pre-surgical planning, as described 
below.

Identification of more subtle tempo-
ral features like the non-stationarities 
described above, places a strong 
demand on the temporal domain of 
the acquired data, which is typically 
several orders of magnitude smaller 
than the spatial domain of image 
voxels. We explored the potential to 
identify extended brain networks 
using temporal independence (tem-
poral ICA), in which a brain network 
would be recognized based on hav-
ing a unique temporal signature [2]. 
Unlike spatial ICA, this analysis does 
not penalize spatial overlap between 
networks, but it does require a large 
number of temporal samples to 
robustly identify these independent 
time processes. This approach was 
demonstrated using pilot resting-
state SMS data acquired by the HCP. 
We combined data across five sub-
jects with TR = 0.8 s to accumulate 
24,000 time points over 360 min-
utes. Following careful data clean up 
(see below), the data was parcellated 
into 142 regions using spatial ICA, 
which were then fed into temporal 
ICA to identify 21 temporally inde-
pendent functional modes (TFMs). 

The resulting TFMs contained signifi-
cant spatial overlap, with most of the 
spatial ICA parcels contributing sig-
nificantly to multiple modes. Encour-
agingly, most of the TFMs also corre-
sponded to extended networks of 
known functional anatomy. The 
visual system was decomposed into 
well-established streams of visual 
information processing (Fig. 2), while 
other TFMs capture high-level cogni-
tion such as semantic processing or 
language (Fig. 3). 

Clinical fMRI at the individual 
patient level  
The use of resting-state fMRI in the 
clinical domain is fairly recent, but 
has begun to attract attention for 
clinical applications in general, and 
for pre-surgical mapping in particular 
[11, 12]. Resting-state fMRI does not 
depend on task performance and is 
less contingent on patient compli-
ance. It is also less demanding with 
respect to experimental setup than 
task-based fMRI and can be more  
easily acquired by MRI technicians.  
In some instances, such as when 
probing orofacial motor functions, 
task-based fMRI is prone to task-cor-
related head motion. Furthermore, 
there is initial evidence that resting-
state fMRI data may establish intra- 

and perilesional BOLD reactivity and 
thereby serve as a less stressful substi-
tute for cerebrovascular reactivity 
mapping by experimentally induced 
hypercapnia [13]. Clinical applications 
can benefit directly from the increase 
in statistical significance conferred by 
SMS, or can leverage statistical gains 
to increase spatial resolution or reduce 
scan durations – all of which are 
extremely desirable for clinical 
applications. 

Increasing the spatial resolution of 
fMRI improves spatial accuracy, includ-
ing registration to anatomical scans, 
but incurs a reduction in SNR propor-
tionate to voxel volume. In some con-
texts, data quality can be improved 
through the combined use of high spa-
tial resolution with edge-preserving 
smoothing to increase SNR, reducing 
partial volume and signal dropout 
compared to data acquired at the fil-
tered resolution. However, smoothing 
can artificially extend or eliminate  
true activations, both of which are 
problematic for pre-surgical mapping 
and intra-operative neuro-navigation. 
Sophisticated data analysis strategies 
will thus be required to translate the 
potential improvements in spatio- 
temporal resolution with SMS fMRI 
into clinical applicability [14, 15].  

High-level cognitive networks identified from resting-state fMRI data on the basis of temporal independence, both including overlap 
with the well-established ‘default mode network’ [1]. The network on the top (TFM 11) is reasonably symmetric across hemispheres 
and involves a set of regions that are involved semantic processing. The network displayed below (TFM 13) contains significant 
overlap with this semantic network, but is strongly lateralized and includes language regions. Reproduced with permission from [2].
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Improved single-subject fMRI results with SMS fMRI. Speech mapping data in the same patient, using non-SMS low spatio-temporal 
resolution (3 mm, TR = 3s) vs. SMS high spatio-temporal resolution (1.8 mm isotropic, TR = 1.5 s, SMS factor 3). Statistical confi-
dence of the SMS results increases remarkably (top: unthresholded, bottom: thresholded using different Beta priors [14] instead of 
smoothing kernels), demonstrating that doubling the temporal resolution by SMS over-compensated the reduced SNR at higher 
spatial resolution. The lesion was an incidentially detected, left supramarginal focal cortical dysplasia (small center image),  
initially mistaken for a low-grade glioma, with reduced intra- and perilesional cerebrovascular reactivity.

4

Improved (sensori-)motor mapping by SMS 
resting-state fMRI in a left precentral low-grade 
glioma prior to resective surgery. The patient 
suffered from focal motor seizures involving 
both eyebrows (bilateral N.VII innervation),  
the contralateral mouth corner (contralateral 
N.VII innervation), chewing, vocalizations and 
speech arrest (N.V, IX, X and XII innervation), 
corresponding to the motor humunculus repre-
sentation below the handknob. Task-based 
fMRI would have been confounded by 
stimulus-correlated head motion potentially 
causing false-positive detections primarily at 
the tumor border. Resting-state fMRI reveals 
statistical gains (color-coded Z-statistics) of 
SMS high (TR = 1.56 s, SMS factor 3) over 
non-SMS low (TR = 3.33 s) temporal resolution 
fMRI, despite the shorter acquisition time  
(6.5 vs. 14 min).

5

An example of the benefits of 
increased spatio-temporal resolution 
by SMS fMRI for language mapping  
in a patient is given in Figure 4.

Shorter experiments are desirable not 
only because scan time is precious in 
the clinical domain, but also consider-
ing limitations in task performance 
and/or compliance in patients.  

Figure 5 illustrates corresponding 
gains that can be achieved by SMS  
for pre-surgical fMRI, exemplified  
by sensorimotor mapping. These 
benefits have to be substantiated  
and systematically explored by future 
studies. Note that motor mapping is, 
even in the case of space-occupying 
lesions, rarely indicated because the 

sensori-motor strip can be identified 
in most patients by pure anatomic  
criteria. The real challenge to transfer 
resting-state fMRI into pre-surgical 
practice lies in the mapping of  
‘eloquent’ functions with no absolute 
cortical representation. That is, the 
meaningful pre-surgical mapping of 
essential functions whose cortical  
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representations cannot be predicted 
by anatomic criteria alone, such as 
speech and language in particular. 
While it is intrinsically difficult to avoid 
a circularity of assumptions about  
the hemispheric representation and 
dominance of speech and language 
in this context, recent attempts to 
relate connectivity gradients from 
SMS resting-state fMRI to language 
lateralization in non-clinical samples 
of the HCP project have been promis-
ing [16]. However, task-based pre-
surgical fMRI mapping can be per-
formed in 3 to 8 minutes while the 
recording of these high-quality SMS 
resting-state data took one hour (see 
above), and initial efforts to translate 
such sophisticated analyses to real 
pre-surgical tumor patients using 
clinically acceptable scan times of  
6 to 13 min have proven difficult. 
Generally, acquiring high-quality 
resting-state fMRI data that provide 
access to subtle information in the 
spatio-temporal domain (such as 
robust functional connectivity gradi-
ents or TFMs; see above) will con-
tinue to require longer scan times 
than simple task-based fMRI even if 
SMS acceleration is used. 

Cautions, challenges and 
confounds 
Achieving the benefits of SMS in  
fMRI does require some additional 
care to protocol design and data  
analysis. Here we review several  
common challenges and strategies  
to overcome them.

High temporal resolution using SMS 
requires careful consideration of 
standard analysis pipelines. Residuals 
are generally assumed to be ‘white 
noise’ (with each time point indepen-
dent of other time points), making 
any source of structured noise prob-
lematic. Violation of this assumption 
(for example, temporally smooth 
noise) can cause the residuals to 
have lower degrees of freedom than 
anticipated and thereby inflate the 
apparent statistical significance. At 
high temporal resolution, it is there-
fore crucial to account for any struc-
ture in the residuals [4]. Most fMRI 
software packages enable suitable 
noise corrections, although this may 
not be a default option.

Fast temporal sampling with SMS  
will typically reduce the repetition 
time down to the second or sub- 
second range, such that the magneti-
zation will not recover fully from  
one RF excitation to the next. This 
results in some loss of signal in each 
individual volume relative to more 
typical temporal sampling at a rate  
of 2-3 seconds. Reducing the excita-
tion to the Ernst angle can mitigate 
these effects, but some signal loss  
is inevitable. Nevertheless, it is 
straightforward to demonstrate  
that the signal loss in a given image 
volume is more than compensated  
by the statistical gains described 
above [17].

Despite the benefits described above, 
fast sampling is not a panacea for 
overcoming some limitations of  
functional MRI based on the BOLD 
response. Neurovascular coupling, 
which determines BOLD signal 
delays, is dependent on region,  
physiological state and neurovascular 
pathology. Hence, while faster sam-
pling enables detection of the BOLD 
response to neural activity with 
greater temporal precision, uncer-
tainties in the hemodynamic 
response mean that it is unlikely to 
provide the ability to infer neural  
timings with greater precision [18].  
It may, however, enable the detection 
of subtle temporal features of the 
hemodynamic response, such as an 
initial signal reduction (known as  
the ‘initial dip’) that has been long 
hypothesized to provide improved 
spatial specificity to the locus of  
neural activity [19].

Another challenge associated with 
short repetition time is signal insta-
bility from ‘spin history’ effects  
that disturb the signal steady state, 
such as caused by subject motion. 
Motivated in part by recent innova-
tions in SMS technology, machine 
learning techniques have been devel-
oped to automatically ‘clean’ data  
by removing these artifacts [20]. 
These techniques, which have been 
extensively evaluated within the HCP, 
can remove much of the signal fluc-
tuations due to physiological noise, 
hardware instabilities and motion. 
Indeed, the fact that methods for 
cleaning data often are based on the 

same analytical techniques (multi- 
variate analysis [20] or regression [21]) 
suggests that SMS data may be more 
intrinsically amenable to clean-up than 
conventional non-SMS data.

Conclusions
Simultaneous multi-slice imaging 
offers enormous potential benefits  
to functional MRI in general, and  
resting-state fMRI in particular. These 
benefits derive primarily from the  
statistical advantage of increasing the 
experimental degrees of freedom. For 
simple tasks, this could enable shorter 
experiments, but the primary benefit 
is expected when estimating a number 
of separate time courses reflecting  
different aspects of brain function. In 
resting-state fMRI, experiments that 
probe a rich hierarchy of brain net-
works are limited by the degrees of 
freedom. SMS fMRI can therefore be 
expected to have particular impact in 
this area. Several examples of such 
benefit have been highlighted here, 
including deployment in large cohorts, 
unique insights into connectivity  
and clinical applications.
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