
A Brain Network Processing the Age of Faces
György A. Homola1*, Saad Jbabdi2, Christian F. Beckmann2,3, Andreas J. Bartsch2,4

1 Department of Neuroradiology, University of Würzburg, Würzburg, Germany, 2 Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom,

3 Donders Institute for Brain, Cognition and Behaviour, Radboud University of Nijmegen and MIRA Institute, University of Twente, Nijmegen, The Netherlands,

4 Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany

Abstract

Age is one of the most salient aspects in faces and of fundamental cognitive and social relevance. Although face processing
has been studied extensively, brain regions responsive to age have yet to be localized. Using evocative face morphs and
fMRI, we segregate two areas extending beyond the previously established face-sensitive core network, centered on the
inferior temporal sulci and angular gyri bilaterally, both of which process changes of facial age. By means of probabilistic
tractography, we compare their patterns of functional activation and structural connectivity. The ventral portion of
Wernicke’s understudied perpendicular association fasciculus is shown to interconnect the two areas, and activation within
these clusters is related to the probability of fiber connectivity between them. In addition, post-hoc age-rating competence
is found to be associated with high response magnitudes in the left angular gyrus. Our results provide the first evidence that
facial age has a distinct representation pattern in the posterior human brain. We propose that particular face-sensitive
nodes interact with additional object-unselective quantification modules to obtain individual estimates of facial age. This
brain network processing the age of faces differs from the cortical areas that have previously been linked to less
developmental but instantly changeable face aspects. Our probabilistic method of associating activations with connectivity
patterns reveals an exemplary link that can be used to further study, assess and quantify structure-function relationships.
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Introduction

Processing the age of faces is a crucial cognitive skill. Facial age

varies but not in a volatile manner like eye gaze, lip movements or

facial expressions. Contrary to other fixed and variant cues [1], the

cognitive basis of facial age processing has not yet been

investigated by any dedicated neuroimaging experiment. Facial

age is depicted by complex features and configurations such as skin

texture and distance from average head shape [2]. Localizing a

brain network involved with age processing will allow us to

determine whether it is primarily up to face-sensitive areas to

combine low-level cues into a coherent age percept, whether this is

formed by a different system altogether, or whether two or more

systems interact with each other. Additionally, facial age

processing may also be relevant and applicable to other networks

that compute effects of magnitude and passage of time.

Developmentally, age is less salient in faces than gender and

ethnicity [3]. In order to augment its processing, we utilize face

morphs which provide useful modulations of the age parameter:

Attracting visual attention to the optical flow of such changes can

be expected to enhance neural responses to every attribute of the

morphed object [4], and average response levels measured in

virtually all face-selective regions tend to be higher for moving

than for static face stimuli [5–7]. Morphing is also suited to

minimize adaptation while animations facilitate implicit processing

without particular cognitive efforts, and video probes in general

are increasingly adopted for stimulation in neuroimaging exper-

iments [5,7–16]. Static images from graded morph transitions

have already been used as a powerful tool to investigate visual

processing of faces and non-face objects [17–27] but age has either

not been varied or controlled.

Here, we generate continuous morphs that introduce indepen-

dent age and gender changes of face stimuli. These changes are

virtual but based on a fully morphable 3D model, similar to

[18,28], and therefore constrained to appear smooth and realistic

(Figure 1A, Movie S1). Processing of facial age is compared with

gender - instead of identity, attractiveness, or other changeable

face aspects - for the following reasons: Gender differentiation

normally changes with age and involves changes of similar

complexity like aging [29]. By contrast, identity recognition is,

within limits, age-invariant [30]. Furthermore, judgments of age

and gender need not be affected in prosopagnosia [31–33] but

cases selectively agnostic for age while preserving gender

recognition have not yet been reported. Given that categorical

gender varies across androgyny levels [25], both gender as well as

age of a face are quantifiable but not instantly changeable. Based

on the cognitive models of face processing proposed by Bruce and

Young [34] and Ellis [35–37], face gender and age have both been

conceptualized as ‘visually-directed semantic codes’ [38] and their

processing is here compared to each other.

We use functional (fMRI) and diffusion-weighted (DWI)

magnetic resonance imaging to investigate the following: (i) Do

facial age and gender transitions engage distinct functional

networks? (ii) Which of the age-responsive areas are associated
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with high age-rating competence? (iii) Is the pattern of functional

activation within age-responsive areas related to their connectiv-

ity? Using spatial cross-correlations between probability profiles of

activation and fiber connectivity, we assess the impact of structural

connections on activation patterns. Thereby, we seek to substan-

tiate which fiber pathways transmit age-relevant information of

faces. According to our results facial age processing involves

distinct brain areas, connected by vertical association pathways.

We suggest that face-sensitive regions may interact with quanti-

fication modules when age (but not androgyny) is varied across

faces.

Materials and Methods

Participants
We obtained blood oxygenation level dependent (BOLD) fMRI

and DWI scans of 24 healthy, right-handed, white Caucasian

volunteers (age range 23 to 34, mean age 26, standard deviation 3

years; 12 females), who all gave written informed consent. The

Ethics Committee of the University of Würzburg (Faculty of

Medicine) approved the study. Handedness was assessed by a

variant of the Edinburgh Handedness Inventory [39], expanded

by one eye and foot preference item [40]. Females were scanned

between days 5 to 15 of the menstrual cycle, not taking oral

contraceptives.

For validation of the tractography results, diffusion-weighted

imaging (DWI) data of additional 46 right-handed healthy

volunteers (age range 19 to 63, mean age 30, standard deviation

9 years; 25 females) from the database of the Oxford Centre for

Functional MRI of the Brain (FMRIB) were analyzed.

Experimental paradigm
Full-front photographs of 121 unfamiliar, unambiguously

gendered faces of white Caucasians (age range 2 to 81, mean

age 33, standard deviation 15 years; 60 females age-matched to

the males; all free of any make-up and beardless, with eye gaze

directed at the viewer, wearing no jewellery or piercings, without

tattoos; rated as neutral in their expression on a 6-point visual

analogue scale by all participants) were matched by a computer-

ized algorithm [18,28] to a morphable 3D model consisting of a

surface mesh of editable polygons and texture materials using

FaceGen Modeller v3.1 (2004, Singular Inversions Inc., Toronto,

http://www.facegen.com/) and 3 ds Max 8 (2005, Autodesk Inc.,

San Rafael, http://www.autodesk.com/). From these models, 120

face morphs were rendered. Half of them contained gender

transitions. The mean age difference between start and target face

Figure 1. Continuous face morphing, optical flow and associated functional activations. (A) Exemplary keyframes of a video sequence
(see Movie S1) morphing a 20 year-old female into a 60 year-old male. Both gradual age and gender changes are illustrated at intervals of 1 second.
(B) Line magnitude images of optical flow velocities computed by the Horn-Schunck algorithm. Differential motion/optical flow was quantified as an
overall parameter by the sum of flow magnitudes between successive keyframes. (C) Motion-/flow-related activations of hMT+ derived from the
group-level analyses (n = 24 subjects, FWER-corrected p,0.05, [2log10 (p)] colorbar) on posterior cortical flat maps of both hemispheres.
Additionally, ventral (v) and dorsal (d) visuotopic labels (V1–8, Vp, LO, hMT+) of the SuMS database, transformed from Caret’s PALS atlas into
FreeSurfer’s average surface space, are displayed. Note that according to recent data [112], V4v and V8 are labeled together as hV4 while VP has been
labeled V3v.
doi:10.1371/journal.pone.0049451.g001
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of the 120 morphs was 14.8611.7 years, ranging from 0 to 46.7

years. Since all face stimuli were generated from a fully morphable

3D model [18,28], virtual faces between the start and target

images appear realistic (see Figure 1A, Movie S1), avoiding

grotesque or bizarre distortions for intermediate morphing steps.

Face stimuli were presented as shown in Figure 1A. The two

subjects selected have given written informed consent (as outlined

in the PLoS consent form) to publication of the portrayals derived

from their photographs.

Morphing transitions between two faces lasted 6 seconds (see

Movie S1), with an additional 1-second still in-between. Face

morphs with and without gender transitions (n = 60 each) were

arranged in random order, with all morphs across gender

proceeding from full-male/-female to the opposite.

Facial age of start and target stimuli was continuously

modulated, except for the one-second stills, with varying degrees

and age changes being pseudo-randomized according to 10-year

intervals. Age changes during morphing were independent of (i.e.

orthogonal to) the transitions of gender (Pearson’s normalized

correlation between the modelled regressors: r = 0.046, p = 0.39)

and the psychometric ratings of attractiveness/likeability, which

was not significantly modulated (i.e. did not exceed one rating-

point difference for all start/target image pairs on a 6-point visual

analogue scale). Thereby, morphing eliminates the need for an

explicit baseline but nevertheless allows us to separate the effects of

age and gender.

Psychophysical changes of age and gender were parametrically

modeled according to Steven’s power law (cf. Figures 2 and 3).

Differential motion/optical flow [9] was controlled for and

integrated as a global nuisance variable (Figure 1B,C). Our

experimental paradigm simultaneously engaged configural and

textural processing, both known to be involved in categorical face

processing [41].

Paradigm presentation
The morphing video was presented at 24 frames per second (fps)

using a fMRI-compatible LCD screen, scaled to the maximum

resolution of the presentation equipment (6406480 pixels VGA).

The paradigm contained the entire set of 120 face morphs

between different pairs of start and target faces, separated by 1-

second stills, and was presented to the subjects in a single run

lasting 14 minutes. Thus, the inter-stimulus interval (ISI) between

the offset of a 6-seconds morph and the onset of the next was

1 second, resulting in a stimulus onset asynchrony (SOA) or inter-

trial interval (ITI) of 7 seconds with no stimulus repetitions. In

order to sustain attention and to monitor compliance, subjects

were instructed to press a key with their right index finger

whenever the target face appearance of the morphing sequence

was anticipated. Speed and accuracy were not emphasized. The

explicit task was of no particular interest and only ensured that the

participants attended to the paradigm. The associated activations

are not reported because they are contaminated by co-activations

of executive and motor functioning from key pressing. While

watching the face morph of Movie S1, for example, the subject

realizes that a young female is changed into an older male, and the

characteristics of the target face can be anticipated before it finally

appears. This may coincide with the detection of a subjective

identity transition although identity virtually changes continuously

in a slow but permanent manner during all morphing episodes.

Note that age and gender changes were continuously modeled

over the entire morphing period while subjects generally pressed

the key once in anticipation of the target face, i.e. explicit task

performance was sufficiently independent of implicit age and

gender processing as we have modeled it. Key-press responses

were recorded by a fMRI-compatible keyboard and logged by

Cogent 2000 v125 (2003, Wellcome Laboratory of Neurobiology,

London, http://www.vislab.ucl.ac.uk/)., Global display luminance

was controlled, and constant color channel ratios were maintained.

Temporal synchronization between video presentation and

scanning was achieved by triggering the start of each fMRI

volume externally at a minimum precision of 50 ms using

MATLAB R2007a (2007, The MathWorks Inc., Natick, http://

www.mathworks.com/).

MRI and behavioral data acquisition
We acquired fMRI time-series and T1-weighted anatomical

images of the (n = 24) healthy volunteers in one session, and whole-

brain DWI data and explicit behavioral post-hoc ratings of the

same set of subjects in a second session within two weeks. In order

to assess the relation between fMRI activations and age rating

competence at the second level, age-rating performance was used

to discriminate most accurate (n = 5) from average (n = 14) age-

raters.

Functional and T1-weighted structural MRI data were acquired

on a 3 Tesla TimTrio scanner (Siemens, Erlangen, Germany)

using a 12-channel head coil. Whole-brain T2*-weighted BOLD

images were recorded by a single-shot 2D gradient-echo EPI

sequence with interleaved slice acquisition (TR = 2400 ms,

TE = 30 ms, resolution 36364 mm3, including 25% interslice

gap, 30 sagittal slices of 3.2 mm thickness). After discarding the

four initial scans, 350 volumes acquired during visual paradigm

presentation were analyzed. In order to unwarp geometric

distortions of BOLD EPIs, we used gradient-echo fieldmaps

(TR = 500 ms, TE1 = 4.30 ms, DTE1/2 = 2.46 ms). In addition, a

T1-weighted 3D anatomical image using a MPRAGE sequence

(TR = 1560 ms, TE = 2.26 ms, resolution 16161 mm3) optimized

for segmentation and surface reconstructions and, for basic

screening, a T2-weighted 2D axial FLAIR sequence were

acquired.

In order to avoid potential DWI signal-loss artefacts [42], we

recorded whole-brain diffusion-weighted EPI volumes (60 diffu-

sion directions isotropically distributed on a sphere at b = 1000 s/

mm2, TR = 9000 ms, TE = 97 ms, resolution 26262.5 mm3,

including 20% interslice gap, 60 axial slices) and five volumes

without diffusion weighting on a 1.5 Tesla Quantum Vision

scanner (Siemens, Erlangen, Germany). For unwarping their

geometric distortions, gradient-echo fieldmaps matching the DWI

protocol were used (TR = 325 ms, TE1 = 4.30 ms, DTE1/

2 = 4.76 ms).

DWI data of the independent database were acquired on a 1.5

Tesla Sonata scanner (Siemens, Erlangen, Germany) with similar

sequence parameters at slightly lower slice thickness (resolu-

tion26262 mm3, 72 axial slices). Three sets of DWI data were

recorded for subsequent averaging to improve the signal-to-noise

ratio (total scan time 45 minutes).

Preprocessing and statistical analysis
All MRI data were processed using FSL 4.1 (http://www.fmrib.

ox.ac.uk/fsl/; [43,44]) and FreeSurfer v4.5.0 (http://surfer.nmr.

mgh.harvard.edu/ [45,46]). First-level fMRI and DWI data were

motion- and eddy current-corrected (using MCFLIRT [47] and

eddy_correct, respectively), unwarped (using PRELUDE/

FUGUE) and brain-extracted (using BET [48]; all part of FSL).

First-level fMRI analysis was carried out by applying the General

Linear Model (GLM) within FEAT using FILM prewhitening

[49], with motion outliers (detected by fsl_motion_outliers) being

added as confound regressors. High-pass temporal filtering of the

data and the model was set to 100 secs based on the power spectra

A Brain Network Processing the Age of Faces
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of the design matrices (estimated by cutoffcalc; all part of FSL).

Three main explanatory variables were modeled and controlled:

Optical flow, age and gender change. Parametric intensity

modulation of their graded stimulus strength is described below,

linear modeling of age and gender changes did not explain a

significant amount of variance on top of this. Button press

responses to anticipated target face appearance were also modeled

but of no further interest. In order to capture slight deviations from

the model, temporal derivatives of all explanatory variables

convolved with FEAT’s gamma hemodynamic response function

(HRF) were included.

In order to take advantage of surface-based registrations and

statistical analyses, FreeSurfer was used for segmentation and

surface reconstructions of the structural T1-weighted MRIs.

Employing boundary-based registration (using bbregister, part of

FreeSurfer, [50]), robust and accurate within-subject cross-modal

alignment of functional and anatomical space was achieved.

Concatenating this transformation with the surface-based regis-

tration to FreeSurfer’s spherical average [51], FEAT’s first-level

contrast-of-parameter estimates (COPEs) and their variance

estimates (VARCOPEs) were resampled to the common fsaverage

surface. Surface-based spatial smoothing of 5 mm FWHM was

applied. At the group level, a mixed-effects (ME) GLM analysis

[52] was performed (using mri_glmfit, part of FreeSurfer)

identifying vertices in which brain activity was correlated with

age, gender and optical flow processing. Second-level thresholding

was performed by non-parametric permutation-based cluster mass

inference [53–57] and included within-contrast correction for

multiple comparisons across all vertices of the fsaverage surface.

Across the contrasts tested, Bonferroni’s correction was applied

which further enforced rigorous protection from false-positive

detections. Interactions between the main explanatory variables of

interest (age and gender change, optical flow) were modeled at the

first and assessed at the second level. The volunteers’ gender was

explicitly modeled at the second level to test for differences

between the sexes. Only results with family-wise error rate

(FWER) corrected p-values,0.05 are reported, coordinates are

given in MNI standard space.

Relative response magnitudes were quantified based on

individual mean within-cluster contrast-of-parameter estimates

Figure 2. Psychometrics of facial age and gender changes. (A) Facial age difference ratings (magnitude of age-gradients spanned by
morphing rated on a 6-point visual analogue scale, maximum scaled to 3.0 arbitrary units [a.u.]) followed Stevens’ (‘0.3) better than Weber-Fechner’s
law (log10) or a natural logarithmic transformation (ln) of start and target age. All face stimuli (n = 121) were morphed to an average-aged male face
of 33 years, the morphing sequence was randomly played forwards or backwards for the rating (circles with error bars; n = 24 subjects). (B) Facial
aging (x-axis; objective age in [years]) increased the variability of subjective age ratings (y-axis; SD, standard deviation of estimated age in [years]
across n = 24 subjects). Rating accuracy of factual (n = 121 stimuli of real faces) and interpolated age (n = 80 intermediate face stimuli from the
morphing algorithm; one randomly selected for each annual increment between 2 and 81 years of age) did not differ significantly (p = 0.97). (C) Face
gender ratings (on a 6-point visual analogue scale, maximum scaled to 1.0 arbitrary units [a.u.]) along temporal morph continua (n = 60) across faces
of clearly different sex. Subjective ratings by (n = 24) subjects (boxes with error bars, blue line) were augmented above linear transition values (dashed
line with black dots), reflecting the tendency to apperceptive gender categorization.
doi:10.1371/journal.pone.0049451.g002
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(COPEs) normalized to the respective minimum, see Figure 4B,D.

Scaled to the peak-to-peak height of the effective regressor and

divided by the mean-over-time of the preprocessed (i.e. filtered)

EPI time-series from lower-level GLM analyses, mean COPE

values are equivalent to mean percentage BOLD signal changes

and characterize the observed effect sizes. Given constant scaling

for a particular contrast fitted, normalized COPE values translate

directly into estimated ratios of the associated signal changes

within (but not across) specific contrasts. First-level COPEs from

each cluster were tested for hemisphere and sex effects (n = 24;

ANOVA, factorial within-/across-subjects design).

DWI data were processed using FMRIB’s Diffusion Toolbox

(FDT, part of FSL). Up to two fiber orientations were modeled

and the corresponding probabilistic distributions of diffusion

parameters were built up at each voxel (using bedpostx, part of

FDT). Probabilistic modeling of multiple fiber orientations [58]

was essential because of crossing fibers in the areas under

examination. Subsequently, probabilistic tractography was per-

formed by probtrackx (part of FDT) on the same (n = 24) as well as

independent (n = 46) subjects included for replication, to investi-

gate structural connectivity between cortical regions related to

either age or gender processing. After transforming functional

clusters obtained at the second level back to the individual surface

space of the anatomical scans, each cluster mask was defined as a

seed with all the others serving as potential targets. Probabilistic

streamlines were seeded directly from surface vertices. A total of

10‘4 samples was sent out from each tracking point. Stop and

waypoint masking was used to exclude indirect routes. Upon slight

spatial smoothing (2 mm FWHM), probabilistic seed-to-target

connectivities were then averaged on FreeSurfer’s common

fsaverage surface. Probabilistic pathways were transformed to

MNI space, added and thresholded for visualization (using FSL’s

non-linear 1 mm MNI template as target space; see 3D-tract

volume rendering, thresholded at $100 connecting samples

passing through each voxel, displayed on sagittal [x = 236 mm]

and coronal [y = 254 mm] projection view planes in Figure 5).

Utilizing spatial cross-correlations between functional activation

probability values and tractography-based connectivity scores, we

examine if the activation pattern of one area that processes facial

age is predicted by its intrinsic structural connectivity with

another, i.e. evidence for two selected areas directly interacting

with each other as connections to the latter determine activations

of the former and vice versa. The rationale behind this analysis

was that if the spatial profile of a connection between A and B

predicts the activation profile in A, then this suggests that the

connection between A and B is indeed involved in brain processes

producing the activation in A. Because fiber pathways, even when

connecting A and B, do not have to participate in the processing,

and because functional activations of A and B can be associated

with each other in the absence of direct structural connectivity, we

don’t expect perfect spatial correspondence of functional and

connectional probability profiles. But if detectable, significant

correspondence of functional and connectivity profiles should

emphasize the functional importance of a tract between A and B.

Gender processing is again used for within- and across-condition

comparison.

Vertex-wise spatial cross-correlations between functional and

structural profiles provide a quantitative measure for the

association of the two (cf. Figure 6) and were calculated non-

parametrically using Spearman’s rank correlation coefficient (r).

All p-values were Bonferroni-corrected for the total number of

tests performed. Since lower false-positive activation error

probabilities reflect higher activation likelihoods, i.e. higher

positive t-values and z-scores, absolute log10 (p)-values were used

for correlation.

Modeling changes of age, gender and optical flow
Since face stimuli underwent continuous temporal changes

during the morphing, the explanatory variables of interest were

modeled according to their change over time. Age and gender

change were time-binned at the video frame-rate (24 fps). Scaling

of each regressor was set to a relative maximum of 1. In order to

determine accurate stimulus response functions, especially for age

and gender, we extensively evaluated our paradigm and the stimuli

employed by various psychometric ratings (see Behavioral Results).

Thereby, we empirically identified unbiased stimulus response

functions for age and gender, later used for modeling in the fMRI

analysis.

As illustrated in Figures 2A and 3A, we modeled the age-related

changes between start and target faces dependent on their

psychophysical age difference. By transforming absolute age using

an empirically derived power exponent of 0.3 according to

Steven’s law, our psychophysical response function accounted for

the fact that aging during the first 20 years of life involves more

Figure 3. Modeling changes of age and gender during face
morphing. Both were time-binned at the video frame rate (24 fps) and
scaled to maxima of 1.0 arbitrary units [a.u.]. (A) Differential age change
encoded according to Stevens’ law of psychophysics (using a power
exponent of 0.3; Figure 2A). Note that relative facial aging was up-
weighted to initial periods of the example morph (also see Figure 1A;
here: solid red line) and, for identical age differences, to younger
absolute ages, i.e. aging from 10 to 26 was assumed to provide a
stronger stimulus with more visual cues than aging from 64 to 80 years
(dashed vs. double-dotted/dashed line). (B) Differential gender change
expressed by the first derivative of the function plotted in Figure 2C.
Note that peak androgyny was defined as the effective stimulus-of-
interest, i.e. the transition of facial gender was emphasized at the center
of the morph (see also Figure 1A and Movie S1). Half of the morphs
contained no gender transitions, retaining a flat line at zero level to
indicate the lack of gender change (dashed line).
doi:10.1371/journal.pone.0049451.g003
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visible changes than from 60 to 80, for example. The power

exponent of 0.3 was empirically derived from our psychometric

data (see below). According to these psychometric results, absolute

facial age is best converted according to Steven’s law using 0.3 for

exponential transformation to estimate the psychophysical age

gradient between start and target face (cf. Figure 2A). For the 6-

seconds morphs and based on the psychometric results, the

unsigned first derivative is used (cf. Figure 3A). Using the unsigned

first derivative is based on the psychometrically tested assumption

that the interpolated age of intermediate virtual frames between

the start and target face morphed into each other is not differently

perceived than the age of real faces (cf. Figure 2B). Thus, our

stimulus response function models stronger the age-related

activations the higher the psychophysical age gradient between

two faces morphed into each other. Based on our psychometric

results and in good accordance with previously published data

[25], gender was modeled similarly by the unsigned first derivative

of linear androgyny levels encoded by Steven’s law using 3 for

exponential transformation (see below).

Figure 4. Functional activations associated with changes of facial age and gender. (A) Group-level (n = 24) functional activations1 related
to age and gender change, respectively. (B) Quantification and between-cluster/-hemisphere comparisons of observed effect sizes evoked by facial
age and gender changes across (n = 24) subjects. Individual values of each cluster’s mean activation (6 error bars across subjects) were normalized to
the lowest average of corresponding response magnitudes (as extracted from the first-level analyses). (C) Increased age-related activations1 of the
most accurate (n = 5) above average age-raters (n = 14). The corresponding cortical flat map is outlined by the borders of the left age-responsive
pANG cluster. (D) Relative to average post-hoc raters (avg, n = 14), high explicit age-rating accuracy (upper quintile P80, n = 5) was accompanied by
almost five times the response magnitude during implicit age-change processing within left pANG (p,0.001, based on mean individual activation
levels of the sub-cluster shown in Figure 4C, as back-projected to native subject space). Activations of lower quintile raters (P20, n = 5) were more
variable but not statistically different from the average (P20–80). 1Significant activations (FWER-corrected p,0.05) displayed on FreeSurfer’s average
inflated surface (color bars depict uncorrected activation probabilities [2log10 (p)]). pANG, posterior angular gyrus area; pITS, posterior inferior
temporal sulcus; DLPFC, dorsolateral prefrontal cortex; LOT, lateral occipito-temporal area; FFG, fusiform gyrus; orientation labels: L, left; R, right.
doi:10.1371/journal.pone.0049451.g004
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Optical flow [59], representing the total amount of motion

between successive keyframes of the paradigm, was separately

modeled to reduce the amount of unexplained variance which

would confound the analysis if all morphing transitions were

treated the same. On top of age and gender, optical flow during

morphing differs between different pairs of start and target faces.

Therefore, the full set of visual stimuli containing the (n = 120)

continuous morph sequences displayed in the fMRI paradigm was

fed into a customized Simulink V6.6 (2007, The MathWorks Inc.,

Natick, http://www.mathworks.com/products/simulink/) model

estimating optical flow between successive video keyframes by a

Horn-Schunck algorithm [60] based on flow velocities using

MATLAB’s video and image processing blockset with 30 iterations

per pair. First, a vector field representing the inter-keyframe

motion was extracted, as illustrated by flow magnitude lines in

Figure 1B. Then, the vector field was converted to a binary mask.

The sum of absolute flow values within that mask described the

total amount of motion between successive keyframes of the

paradigm and was robustly estimated as a surrogate parameter of

overall flow intensity at one-second intervals. Note that optical

flow detection on a frame-by-frame basis becomes less robust, i.e.

time-binning above 1 fps does not improve the results. Given that

all pixels exhibiting optical flow cannot be entered as separate

explanatory variables to preserve sufficient degrees-of-freedom for

the analysis, and considering that expansions and contractions

involved in our face morphing were quite smooth, i.e. cross-

correlated, optical flow was estimated at 1 fps and integrated as a

nuisance regressor into our paradigm.

Results

This section is divided into two parts. The first part focuses on

the psychometric behavioral data and, based upon these, on

modeling the psychophysical changes of the main explanatory

variables.

The second part covers the related functional activations, as

derived from the same set of (n = 24) subjects, and the structural

connectivity between them, i.e. the neuroimaging results of the

study.

Psychometric Results
Age rating and the age regressor. For the psychometric

assessment, we instructed our volunteers to rate their subjective

impression of how much facial age actually changed across morph

sequences spanning an age spectrum similar to the original fMRI

paradigm. In order to minimize the potential rating bias, the

Figure 5. Association pathways subserving facial age process-
ing. Ventral portion of Wernicke’s perpendicular fasciculus (WpF)
connecting pANG and pITS (average probabilistic path distributions
connecting the functional clusters; n = 24, 3D-tract volume rendering
thresholded at $100 connecting samples passing through each voxel,
displayed on sagittal [x = 236 mm] and coronal [y = 254 mm] projec-
tion view planes in MNI standard space). pANG, posterior angular gyrus
area; pITS, posterior inferior temporal sulcus; orientation labels: L, left; R,
right.
doi:10.1371/journal.pone.0049451.g005

Figure 6. Surface-based cross-correlation of fMRI activation probabilities and structural connectivities. Spatial cross-correlation plots
(6 SEM)1 between activation probabilities ([2log10(p)]) and structural connectivity scores ([log10(cs/ns)], with [(cs/ns)] reflecting ratios of connecting
samples to the number of samples sent out from each vertex) for pANG, pITS and FFG (cf. Figure 4A), based on two samples: (n = 24) paired with
functional data [red] and (n = 46) independent subjects [blue]. Connectivity ratios tend to get bound earlier at maximum values than corresponding
activation probabilities. Positive correlations were slightly stronger for the sample with paired fMRI and DWI data (n = 24) compared to the
independent sample from the FMRIB DWI database (n = 46; with Spearman’s r displayed for the paired/independent sample when significant).
However, the latter largely replicate and confirm generalizability of the results. 1SEM, standard error of the mean; */**/***: FWER-corrected p,0.05/
0.01/0.001. pANG, posterior angular gyrus area; pITS, posterior inferior temporal sulcus; FFG, fusiform gyrus.
doi:10.1371/journal.pone.0049451.g006
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(n = 121) face stimuli were morphed to another average-aged male

face of 33 years not contained in the original stimulus set.

Therefore, the subjects were familiar with the set of faces used as

start and targets in the fMRI video paradigm but not with the

particular morphs displayed in the psychometric rating. Single

start-to-target morphs were randomly played forwards or back-

wards for the rating, and the corresponding results are plotted in

Figure 2A.

On a 6-point visual analogue scale, subjective age-gradient

ratings for the (n = 121) separate face morphs were best encoded

according to Stevens’ law of psychophysics [61]. Here, the

perceived magnitude of age gradients spanned by the morphs

was related to the difference between start and target age, both

best transformed by a power exponent of 0.3 (cf. Figure 2A). For

infinitesimal small bins during continuous morphing, psychophys-

ical age change then corresponds to the unsigned first derivative of

absolute facial ages (range: 2 to 81 years) encoded by Steven’s law

using 0.3 for exponential transformation. Given that it remains

unclear to what extent facial age estimates are based on local

feature, internal configuration, texture and global shape processing

[29,62–64], this was considered the optimal approach to

implement and model continuous changes of facial age. Deviations

from linear transition values reflect the fact that the subjective

perception of facial aging is relatively up-weighted to initial

morphing periods and younger absolute ages (Figure 3A). Applied

to age changes within individuals, for which only very limited data

of unstandardized and scarcely suitable images are available [29],

this would reflect a modeling bias towards the earlier development

of face shape that prevails over textural changes such as wrinkle

formation during later aging [29], or their removal by cosmetic

rejuvenation. Across individuals and their shape differences,

however, configural processing was not forced into any overt

advantage over featural processing (see also the flow magnitude

lines in Figure 1B). Both are difficult to completely separate and

parameterize for facial age and aging.

In a second rating, the task was to estimate the age of (n = 201)

face stills in years. For this purpose, stills of all (n = 121) real faces

and of (n = 80) interpolated age models were displayed randomly.

In both of these stimulus samples, i.e. the real and interpolated age

models, facial aging increased subjective age rating variability

across our (n = 24) subjects similar to the group-ratings of young

and old faces reported by Ebner [65], see Figure 2B. No significant

difference between real and interpolated faces was detected and

exponential fitting revealed congruent curves.

Age rating competence. Based on the actual distribution of

rating errors accumulated over all stills, we trichotomized

according to upper and lower quintile cutoffs in order to relate

age rating performance to fMRI activations (see below). Because

implicit age-change processing (during the fMRI experiment) is

rather unlikely to strongly correlate with explicit age-rating

accuracy in post-hoc assessments of a limited sample size, this

was not more rigorously modeled. The upper quintile of most

accurate age-raters (n = 5) was compared to average performers

(n = 14). The lower quintile of below-average raters (P20, n = 5)

was excluded. Confirmed by their own verbal report, their

compliance and motivation was limited at the second session so

that age-rating performance of these subjects did not correspond

to their actual capacities. This was reflected in disproportionally

higher post-hoc rating errors and an increased rating variability

(low accuracy #P20: 9.160.8, average accuracy .P20/,P80:

7.160.5 and high accuracy $P80: 5.760.5 years, as averaged

over trials).

Gender rating and the gender regressor. In order to

investigate the psychophysical processing of gender, especially at

intermediate ambiguous levels, (n = 119) sample faces along

temporal morph continua across gender from the (n = 60)

transsexual morphing sequences were rated by the volunteers on

a 6-point visual analogue scale according to their subjective

impression of facial gender/androgyny levels. In accordance with

previous reports [25], subjective gender levels were augmented

above linear transition values reflecting the tendency to apper-

ceptive categorization (Figure 2C). Gender-level ratings of the

faces followed Stevens’ power law just as age but were best fitted

by a power exponent of 3 along the temporal morph continuum

which is also in good agreement with the published data [25].

Perceived gender change while morphing thus simply depends on

the difference of androgyny levels between time-points. For

infinitesimal small bins during continuous morphing towards

mid-androgyny between two clearly gendered faces, psychophys-

ical gender change is then described by the unsigned first

derivative of absolute androgyny levels (range: 0 to 1), encoded

by Steven’s law using 3 for exponential transformation (cf.

Figure 3B). Note that contrary to previous modeling [25], peak

androgyny was defined as the effective stimulus-of-interest because

recognition of face gender transitions is particularly emphasized at

the center of such morphs, see Figures 1 and 3B. Slight deviations

from the center peak were captured by including the temporal

derivative (see Material and Methods). Since pre-pubertal faces

tend to appear less gendered the younger they are, androgyny

peaks while morphing can be shifted to very young faces.

Similarly, very old faces, especially when seen without hairstyle,

may be liable to a male classification bias. Modeling a temporal

derivative accounted for these effects and avoided a bias in testing

age-by-gender interactions.

Neuroimaging Results
Functional activations associated with optical

flow. Inclusion of optical flow as a nuisance variable enabled

us to account for low-level configural and featural changes during

face morphing which would otherwise have confounded the

analysis. Optical flow was associated with functional activations in

the motion-sensitive cortex (hMT+), see Table 1 and Figure 1C,

that is known to respond stronger than any other area to radial

motion, 2D expansions and contractions of objects [9,66–70].

Functional (hMT+) activations related to optical flow are shown

on bilateral flat maps in Figure 1C with additional visuotopic

labels [71,72] of the SuMS [73] database (http://sumsdb.wustl.

edu/) to facilitate orientation and to illustrate the spatial

correspondence of our clusters with the hMT+ atlas labels.

Functional activations associated with facial age and

interactions. Age change-related activations were centered on

the posterior inferior temporal sulcus (pITS), lateral to the fusiform

gyrus (FFG), and on the posterior angular gyrus area (pANG) of

both hemispheres; see Figure 4A and Table 1. Age change, but not

the gender condition, was found to be associated with higher mean

left-hemispheric activations (p = 0.04, ANOVA, condition-by-

hemisphere interaction; Figure 4B). Apart from that, no other

significant condition-by-hemisphere interactions, no significant

differences between male and female volunteers and no significant

positive or negative interactions between the variables-of-interest

age, gender and optical flow or their relative response magnitudes,

i.e. normalized effect size values, were detected. Note that the fact

that we did not detect a gender-by-age interaction may be related

to our specific modeling approach and our stimulus set of clearly

gendered faces. The latter limited high androgyny levels to morphs

with gender transitions and thereby the power to detect such

interaction.
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Age-responsive areas associated with high age-rating

competence. Within left pANG, a sub-cluster above the

superior temporal sulcus (STS) discriminated the upper quintile

(P80, n = 5) of best explicit age raters from average performers

(P20–80, n = 14) by higher activations, see Figure 4C and Table 1.

Here, superior explicit age-rating competence of upper quintile

performers corresponded to an enhanced mean response magni-

tude in their activation level associated with facial age, which was

augmented by more than fourfold relative to average raters (as

illustrated in Figure 4D). The lower quintile (P20, n = 5), which

was not included in this specific second-level assessment based on

the behavioral data, exhibited the highest variability of corre-

sponding relative fMRI response magnitudes (shown by increased

error bars in Figure 4D). The more pronounced fMRI response

variability of these below-average age raters emphasizes their

heterogeneity and presumed underperformance with respect to

their actual capacities, which had prompted their exclusion from

this part of the analysis (see Behavioral Results above).

Functional activations associated with facial

gender. Gender change-related activations were detected within

FFG bilaterally, see Figure 4A and Table 1, amplifying previous

evidence for graded gender responses of the FFG and fusiform face

area (FFA) [21,25]. Notably, increased face androgyny during

across-sex morph transitions activated above the more differenti-

ated gender levels (cf. Figure 3B), and not vice versa as for static

stimuli [25], illustrating the context dependency of the functional

activations. In addition, the right lateral occipitotemporal area

(LOT), already implicated by an early PET study [74], and the left

dorsolateral prefrontal cortex (DLPFC) were involved (Figure 4A,B

and Table 1).

Structural connections between age- and gender-related

clusters. For each subject, probabilistic tractography was run

between all age and gender change-related clusters on individual

brain surface reconstructions. An association tract, the ventral

portion of Wernicke’s perpendicular fasciculus [75], was found to

interconnect pANG and pITS (Figure 5). Its almost vertically

running fibers connect the posterior inferior parietal lobule,

namely the angular gyrus (‘pli courbe’), and the parieto-occipital

transition, namely the second parieto-occipital ‘pli de passage’ of

Gratiolet [76], with the inferior temporal area [77]. Other cortico-

cortical pathways, such as fibers of the superior longitudinal and

fronto-occipital fasciculi connecting FFG, pANG and DLPFC

(schematically displayed in Figure 7), are not rendered for display

and revealed lower connectivities (see log-transformed connectivity

scores in Figure 6), except for clusters located very close to each

other (e.g., FFG and LOT). Commissure connectivities between

clusters related to age or gender processing remained negligible,

i.e. less than 0.1% of the total number of samples sent out from

seed vertices reached the targets (n = 32 pathways of homo-, e.g.

right«left pITS, and heterotopic, e.g. right pANG«left pITS,

commissures extracted).

Linking connectivity and activation patterns. The con-

nectivity between functionally defined seed- and target-clusters

was quantified by counting how many connecting samples arrived

at every vertex of the target (from any vertex of the steed), yielding

an index for every target vertex. In order to characterize the extent

to which different structural seed-to-target connectivities relate to

activation patterns, we then examined the vertex-wise spatial

cross-correlations between surface connectivity scores and activa-

tion probabilities, i.e. the above connectivity index was correlated

(plotted) against the activation probability of the target vertices in

Figure 6 (see Materials and Methods). This is based on the

hypothesis that if there is a direct structural connection between a

pair of functional regions, where this connection itself is involved

in the cerebral processing, then locations of highest fMRI

activation probability within the regions should be close to the

highest probability of structural connectivity between them, i.e. the

patterns of functional activations and anatomical connectivity

should be positively correlated. We tested this hypothesis on all

clusters responsive to age and gender change.

At the group level, by far most consistent spatial cross-

correlations between activation probabilities and average connec-

tivity scores were detected for pANG and pITS (cf. Figure 6;

results exclusively shown for association pathways of Wernicke’s

perpendicular fasciculus between pANG, pITS and FFG). Thus,

for pANG, lowest type I activation error probabilities were in

proximity to high pITS connectivity, indicating pITS’ ability to

directly recruit pANG for age processing and vice versa. In

addition to pANG and pITS within the age-change condition of

both hemispheres (Figures 4 and 6), significant but lower positive

Table 1. Synopsis of functional activations related to age, gender and motion/optical flow.

hemi cluster size CWP Max VtxMax MNI X, Y, Z vE/BA annotation

age left pANG 2309 0.0001 8.739 142332 241.0 274.5 27.0 PG/39 inferior parietal

pITS 526 0.0001 7.307 40331 254.1 255.8 28.5 PH/37 inferior temporal

right pANG 1177 0.0001 8.465 117820 46.7 259.3 19.5 PG/39 inferior parietal

pITS 367 0.0004 6.025 5665 54.2 253.5 29.4 PH/37 inferior temporal

rating* left pANG* 32 0.0133 5.045 146872 242.4 256.6 25.5 PG/39 inferior parietal

gender left DLPFC 370 0.0005 5.948 29235 236.9 19.5 22.1 FD/46 inf. front. sulcus

FFG 228 0.0020 5.437 92500 239.1 267.9 217.2 PH/37 fusiform

right LOT 862 0.0001 5.988 35952 42.4 277.3 25.4 OA/19 lateral occipital

FFG 202 0.0021 5.107 28527 36.4 256.0 216.4 PH/37 fusiform

motion left hMT+ 605 0.0001 8.816 551 242.6 279.6 0.1 OA/19 middle occipital

right hMT+ 1204 0.0001 8.554 91197 46.7 258.9 0.4 PHO/19 middle temporal

Clusters significantly activated by changes of facial age, gender and motion/optical flow (FWER-corrected p,0.05 for n = 24 subjects)1.
1hemi, hemisphere; size in [mm2], CWP, cluster-wise probability (non-parametric cluster mass inference over the entire surface; [ ]); Max, peak activation probability
(absolute log10-maximum of uncorrected p-values: 2log10(p); [ ]); VtxMax, vertex of Max on Freesurfer’s average surface; MNI, coordinates in MNI standard space [mm];
vE/BA, [113]/[114] area; annotation, anatomical labels; pANG, posterior angular gyrus area (*sub-cluster related to high age-rating competence); pITS, posterior inferior
temporal sulcus; DLPFC, dorsolateral prefrontal cortex; LOT, lateral occipitotemporal area; FFG, fusiform gyrus; hMT+, human motion-sensitive MT+ (V5 or MT/MST) area.
doi:10.1371/journal.pone.0049451.t001
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vertex-wise spatial cross-correlations of activation probabilities and

connectivity values were only found in the right hemisphere for the

pANG and LOT cluster (0.10#r#0.18 for pANG«LOT; not

shown). Furthermore, activations of the pANG cluster revealed

potentially relevant associations with connections to FFG,

especially on the left, but just on this tractography seeding end

(i.e. FFG activations were not consistently related to their pANG

connectivity; see spatial cross-correlation plots in Figure 6), and

pANG’s overall connectivity to the FFG cluster remained

comparatively low. These connections, which were originally

discovered by Wernicke [78] based on anatomical examination of

monkey brains [79] and later demonstrated to form part of the

stratum verticale convexitatis in men [80], correspond to fibers of

Wernicke’s perpendicular fasciculus between the angular and

fusiform gyri [81]. Commissure connectivities (n = 32 homo- and

heterotopic pathways; see above) were also tested but revealed no

significant vertex-wise spatial cross-correlations with correspond-

ing activation probabilities. Because cluster size and distance

effects are hard to disentangle from meaningful inter-hemispheric

differences, we did not test for differences between surface-based

spatial cross-correlations of fMRI activation probabilities and

structural connectivities across the two hemispheres.

Discussion

Our investigation provides the first description of a distinct

brain network associated with processing the age of faces and its

underlying structural connectivity. Although facial age is of high

social relevance and has been shown to influence medial prefrontal

activations when presumed personality characteristics are rated

[82], the neural basis of facial age processing itself has not

previously been identified. According to our data, its primary

cortical components – the areas around pITS and pANG – are

separate from those processing categorical gender while face-

selective FFA activations have recently been shown to be primarily

predicted by inferotemporal connectivity of the FFG [16].

Notably, the age-processing network, i.e. pITS together with pANG,

also expands the proposed core system representing other variable

face aspects (such as eye gaze; unvaried and directed at the viewer

in our fMRI study) which are ready to change instantly under

attentional, emotional or volitional instead of ontogenetic control

[1,83]. It may also augment the extended system, as previously

conceptualized, which has been suggested to mediate spatially

directed attention and recognition of emotions in faces, for

example [1].

Structural within-network connectivity
Wernicke’s perpendicular fasciculus (WpF) has been recognized

as a separate cerebral association tract but so far largely escaped

further description and attention [84]. Only its more posterior

occipital portion has been implied as part of a disconnection

syndrome potentially underlying cases of pure alexia [85].

Compared to other association tracts, it runs in a peculiar vertical

instead of horizontal trajectory which enables it to interconnect

ventral and dorsal parallel pathways [86], see Figures 5 and 7.

Despite the known limitations and inaccuracies of DWI-based

tractography [87], our main finding that brain activity spatially

correlates with connectivity between pITS and pANG substanti-

ates our claim that the structural connection of these two cortical

areas by WpF’s ventral portion is of real functional importance in

vivo. Specifically, our results suggest that this association pathway

may be linked to facial age processing (see below).

Methodological Limitations
Given that tractography cannot reveal directions of information

processing, our data do not ensure that it is pITS that recruits

pANG and not vice versa. Continuous morphing, despite its

strength of presumably augmenting change-sensitive neural

responses and supporting our explicit psychophysiological model,

precludes reliable detection of temporal delay differences between

pITS and pANG. Thus, we acknowledge that these clusters may

influence each other reciprocally, as schematically indicated in

Figure 7, a fact that is generally assumed for most cortical areas

connected by association tracts.

Due to the inherent smoothness of fMRI data, which is further

pronounced on the average surface, and because connectivity

probabilities tend to increase the closer seed and target are located,

association of probabilistic connectivity and activation probabil-

ities for extremely short association fibers and cortical regions

located very near to each other (e.g., right LOT and pITS across

the age and gender condition) may be inflated. In fact, at a liberal

threshold (p = 0.05, uncorrected for multiple comparisons) the

right age-related pITS activation extends into the ipsilateral

gender-related LOT cluster, and nearby parts of these two clusters

are also vigorously interconnected. This suggests that right LOT,

to some extent, may participate in age processing. Similarly,

connectivity of gender-responsive FFG to nearby pITS (not shown)

and pANG (Figure 6) may be relevant for facial age processing. In

having identified potential key components of these circuitries, our

study may serve as a precursor for future studies of effective

functional connectivity between such sets of areas, e.g. by using

dynamic causal modeling (DCM). Interestingly, apparent face

gender is normally fixed for a given individual (except in early

Figure 7. Left-hemispheric nodes of the presumed brain
network processing the age of faces. 3D model illustrating how
the ventral stream, pITS in particular, may interact via Wernicke’s
perpendicular fasciculus (WpF) with the posterior magnitude-encoding
and approximate number system [98,99], pANG in particular, to
quantify the varying age of faces. FFG exhibits some connectivity to
pANG (cf. Figure 6) but is primarily engaged in processing fixed face
attributes such as categorical gender (even if continuously changed
over variable androgyny levels like in Figure 1A; see also Figures 2C, 3B
and 4A). pANG, posterior angular gyrus area; pITS, posterior inferior
temporal sulcus; DLPFC, dorsolateral prefrontal cortex; LOT, lateral
occipitotemporal area; FFG, fusiform gyrus; 17–19, Brodmann’s areas
forming three visual tiers; hMT+, human motion-sensitive temporal
cortex; ITG/MTG/STG, inferior/middle/superior temporal gyrus; ITS/STS,
inferior/superior temporal sulcus.
doi:10.1371/journal.pone.0049451.g007
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developmental stages and transsexuals): Changes of face gender

are virtually always and inevitably associated with changes of

personal identity. Consistent with it and the presented results, both

gender and identity processing have been strongly associated to

FFG/FFA [19,21,25,88–93]. The fact that our data on the

processing of face gender (which also changed continuously in our

experiment) largely replicates previous results obtained by static

stimuli [21,25,74,94] and that neither our age nor gender

condition involved the right anterior STS (which has been shown

to exclusively respond to moving faces) [7,11] further strengthens

the conclusion that we have indeed detected a brain network

processing the age of faces and not other unstable features (such as

the movement within the faces) or subliminal changes of identity.

This corroboration is important, since people do not normally age

in front of our eyes, and adaptation experiments have indicated

the potential recruitment of more widely distributed brain regions

[21] and the area around the STS even in identity processing [95].

However, the latter finding is not supported by other data [96] and

would, contrary to our findings, also be expected to affect our

gender condition.

Interpretation
A unique combination of fMRI and diffusion tractography

measurements enabled us not only to track anatomical connec-

tions between peak activations but also to uncover significant

spatial cross-correlations between functional activations on the one

hand and structural connectivity probabilities on the other. The

demonstration of such associations between functional and

probabilistic connectivity measures, which has only recently been

highlighted by a different hypothesis and approach [16,97], may

further assist the understanding of relations between fMRI

activations and cerebral connectivity. For example, this type of

association in the localization of function and structure can

substantiate evidence for fiber tracts being directly involved in

transmitting condition-relevant information which has not previ-

ously been proposed or analyzed. Our data suggest that age-

relevant information may be transmitted between pITS and

pANG by the anterior division of Wernicke’s perpendicular

fasciculus to which no unambiguous function has yet been

attributed.

Our results allow us to propose the first coherent model

(illustrated in Figure 7) for how the ventral visual stream may

interact with the angular gyrus area to process different facial ages.

Changing within as well as across individuals, age is automatically

quantified and attributed particularly to faces, i.e. more precisely

than for any other object. We propose that facial age is

represented in terms of growing quantities and contrastable

numerical magnitudes. By utilizing the ventral part of Wernicke’s

perpendicular fasciculus, a largely understudied association tract,

age-responsive pITS gains access to pANG, posterior processing

core of a common quantification network outlined in a theory of

magnitude (ATOM) [98] and part of an approximate number

system (ANS) [99]. Neither pITS nor pANG are likely to process

facial age exclusively, and both areas are certainly not only

devoted to decode the age of faces, yet our findings indicate their

spatially coherent involvement in its implicit processing across

subjects. Sparse data from brain-lesioned patients [100] indicate

that the posterior right brain may be crucial for (ap-)perceptive

component of age processing. Increased left-hemispheric responses

(shown in Figure 4A,B) and higher activation levels of most

accurate raters above the superior temporal sulcus within left

pANG only (cf. Figure 4C,D), on the other hand, correspond to a

known importance of the left angular gyrus for abstract number

representations, quantized discrete decoding, numerical compar-

isons and operations [101,102], as well as high mental calculation

abilities [103]. These findings do not disambiguate which lower-

level brain regions and face features (e.g., wrinkle quantity, skin

texture, or head cast with different developmental face-to-skull

proportions) contribute to the encoding of facial age. Nevertheless,

they may suggest that the age-responsive network assembles and

eventually integrates these inputs into comparable and estimable

magnitudes particularly within pANG, by different contributions

from the right and left hemisphere. Contrary to the static and

dynamic processing of other face object categorizations and

discriminations [7,104], average responses related to facial age

were more pronounced and robust in the left hemisphere, and age-

rating performance was also associated with left brain functioning

of pANG.

Considering the extraordinary relevance of age judgements for

the interpersonal domain, e.g. to establish peer communication,

attractiveness and even empathy, the cognitive processing of facial

age and aging reflects an intrinsic core capacity of the human

‘‘social brain’’. Its functions have also been related to the temporo-

parietal junction. Attractiveness, which has not been modulated in

our study, is influenced by facial age [2,105]. It has been, among

other brain areas, associated with the STS. However, activation

peaks reported for attractiveness judgements [106] were located

superior to those of pITS and more anterior to those of pANG (see

Table 1). Obviously, faces of the same age are differently

attractive, and attractiveness per se has not been shown to evoke

unequivocal activations [107]. Furthermore, the brain network

proposed by us to process facial age clearly differs from the largely

reward-related systems that have been implied in association with

beauty [107–110].

Outlook and Conclusions
Future investigations and lesion studies are required to further

elucidate cognitive age processing. Our analysis may be broadened

by other approaches examining distributed patterns of neural age-

encoding in their selectiveness and specificity but this would have

been beyond the scope of this study. More elaborate insights can

be anticipated investigating age discrimination upon face inver-

sion, processing the age of non-face objects, adaptation to age,

own- vs. other-age effects including associated visual processing

strategies and their potential center-periphery bias, cross-modal

integration of age information, age processing in the blind,

dissociation of non-abstract and numerical age representations,

and the development of age-recognition expertise. Even though

our study highlights pANG as one key component for age

processing, its precise role in this context is still speculative and

needs further investigation. Our model, illustrated in Figure 7,

gives rise to interesting hypotheses: One testable prediction would

be that disruption of left pANG activity using transcranial

magnetic stimulation (TMS), for example, should impair numer-

ical age but not gender judgements, and that brain lesion-

symptom mapping can eventually dissociate the two. On the other

hand, our model of separate brain networks processing age and

gender (cf. Figure 7) would be falsified if dissociations of age from

gender agnosia cannot be confirmed. Consistent with our

proposed model of segregated neural systems for gender and age

processing, Bruyer & Schweich describe a patient with prosopag-

nosia secondary to a right temporo-occipital brain haemorrhage

(most likely affecting right LOFA +/2 FFG according to their

description) who exhibited deficient gender categorization but in

whom age classification was preserved [38]. Another assumption

would be that activity of at least parts of the network processing

the age of faces is incremental with low-level cues, such as wrinkle

formation and head proportions, with more cues giving rise to
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higher activation levels in these areas. Such low-level cues

determining facial age perception may be modulated con- and

divergently. Finally, pANG (but not pITS?) may be involved in the

processing of age and aging for non-face stimuli, like other body

parts or inanimated objects.

The notion of a distributed neural core system processing fixed

attributes vs. changeable aspects of faces [1] parallels the

traditional logic of distinguishing essential from non-essential

object properties. In this regard, facial age may be considered an

auxiliary appearance, conveying non-symbolic, abstract and social

information. As is the case with gender and identity, age does not

need to be constantly ascertained in another’s face and is not

reproduced or ‘‘mirrored‘‘ by the perceiver. Therefore, its regular

processing presumably relies less on permanent monitoring

required to follow eye gaze, lip-speech or facial expressions [83]

for which predictable motion trajectories may be anticipated

[111]. Our results can be interpreted to discover a genuine set of

the face-processing ensemble: the posterior inferior sulcus within

the extrastriate system of visual face analysis that interacts via

Wernicke’s perpendicular fasciculus with extended modules of the

angular gyrus area to represent the age of faces.

Supporting Information

Movie S1 Exemplary video sequence morphing a 20
year-old female into a 60 year-old male. The exemplary

morph video (Movie 1) is also available in Windows AVI and

Apple QuickTime format for download here: http://www.

neuroradiologie.uk-wuerzburg.de/facemorph/.

(MOV)
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Cord And Brain; Sharpey-Schäfer EA, Sir, Thane GD, editors. London:
Longmans, Green and Co. pp. 165–166.

82. Ebner NC, Gluth S, Johnson MR, Raye CL, Mitchell KM, et al. (2011) Medial

prefrontal cortex activity when thinking about others depends on their age.
Neurocase 17: 1–10.

83. Calder AJ, Young AW (2005) Understanding the recognition of facial identity

and facial expression. Nat Rev Neurosci 6: 641–651.

84. Oishi K, Zilles K, Amunts K, Faria A, Jiang H, et al. (2008) Human brain

white matter atlas: Identification and assignment of common anatomical

structures in superficial white matter. Neuroimage 43: 447–457.

85. Greenblatt SH (1973) Alexia without agraphia or hemianopsia. Anatomical

analysis of an autopsied case. Brain 96: 307–316.

86. ffytche DH, Catani M (2005) Beyond localization: from hodology to function.

Philosophical Transactions of the Royal Society B: Biological Sciences 360:
767–779.

87. Jbabdi S, Johansen-Berg H (2011) Tractography: Where do we go from here?

Brain Connectivity: (In Press).

88. Hoffman EA, Haxby JV (2000) Distinct representations of eye gaze and identity

in the distributed human neural system for face perception. Nat Neurosci 3:

80–84.

89. Gauthier I, Tarr MJ, Moylan J, Skudlarski P, Gore JC, et al. (2000) The

fusiform ‘‘face area’’ is part of a network that processes faces at the individual

level. J Cogn Neurosci 12: 495–504.

90. Grill-Spector K, Knouf N, Kanwisher N (2004) The fusiform face area

subserves face perception, not generic within-category identification. Nat

Neurosci 7: 555–562.

91. Loffler G, Yourganov G, Wilkinson F, Wilson HR (2005) fMRI evidence for

the neural representation of faces. Nat Neurosci 8: 1386–1390.

92. Kanwisher N, Yovel G (2006) The fusiform face area: a cortical region
specialized for the perception of faces. Philos Trans R Soc Lond B Biol Sci 361:

2109–2128.

93. Haist F, Lee K, Stiles J (2010) Individuating Faces and Common Objects
Produces Equal Responses in Putative Face Processing Areas in the Ventral

Occipitotemporal Cortex. Frontiers in Human Neuroscience 4: 181.

94. Kaul C, Rees G, Ishai A (2011) The Gender of Face Stimuli is Represented in

Multiple Regions in the Human Brain. Frontiers in Human Neuroscience 4:
238.

95. Winston JS, Henson RN, Fine-Goulden MR, Dolan RJ (2004) fMRI-

adaptation reveals dissociable neural representations of identity and expression
in face perception. J Neurophysiol 92: 1830–1839.

96. Cohen Kadosh K, Henson RN, Cohen Kadosh R, Johnson MH, Dick F (2009)

Task-dependent activation of face-sensitive cortex: an fMRI adaptation study.
J Cogn Neurosci 22: 903–917.

97. Jbabdi S, Behrens TE (2012) Specialization: the connections have it. Nature

neuroscience 15: 171–172.

98. Walsh V (2003) A theory of magnitude: common cortical metrics of time, space

and quantity. Trends Cogn Sci 7: 483–488.

99. Cantlon JF, Platt ML, Brannon EM (2009) Beyond the number domain.
Trends Cogn Sci 13: 83–91.

100. De Renzi E, Bonacini MG, Faglioni P (1989) Right posterior brain-damaged

patients are poor at assessing the age of a face. Neuropsychologia 27: 839–848.

101. Göbel S, Walsh V, Rushworth MFS (2001) The Mental Number Line and the

Human Angular Gyrus. Neuroimage 14: 1278–1289.
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